五,书籍和媒体简介(见证)

第1660篇

 

    科学家洪铭辉和郭瑞年夫妇的信主见证

     从福音影视(FUYIN.TV)的见证栏,查阅到‘真情部落格’2015年的第39集,是寇绍恩牧师主持的访问科学家洪铭辉和郭瑞年夫妇的信主见证。

     我们从以下记载的两位科学家的简历看出,他们是卓有成就的物理学家,著名大学教授,近30年来不断有科研成果问世,2003年从美国回台湾后每年都有论文发表和新的发现。他们从贝尔实验室带回台湾一整套实验室设备,价值数百万美元,培养了许多青年才俊,新一代的物理学家。洪铭辉还多次到大陆高校举办讲座,介绍他的科研成果。他们还都是虔诚的基督徒,郭瑞年教授在台湾大学读大三时就信主,她的夫君洪铭辉比她高两届,是1950年生的,现年65岁。他们在美国读博士学位时,参加基督教会和团契活动,信仰更为坚定。并且带领一个团契。

   从‘真情部落格’的视频可以看到,他们是朴素无华的,有谦虚和认真的学者风度。虽然有杰出的成就和丰富的学识,可丝毫没有矫揉做作和傲气凌人的样子。真是我们主内的好弟兄,好姊妹。

    他们也能在科研工作中做出成果来荣耀上帝,这都是值得我们学习的。

 

 

 

 

 

洪铭辉的简历

職  稱: 特聘教授 系所成員: [ 專任教師 ]
姓  名: 洪銘輝
Minghwei Hong
資  歷: 1980 美國加州大學柏克萊分校 博士
個人網址: http://web.phys.ntu.edu.tw/mhong/
房  號: R701
電 話(1): (02) 3366-5193  
       

2011- 至今 國立台灣大學應用物理研究所暨物理學系 教授
2003-2011 國立清華大學材料系 教授
2009-2010 國立清華大學 奈微與材料科技中心 主任
1999-2003 美國 貝爾實驗室卓越研究員
1981-1999 美國 貝爾實驗室研究員
1980-1981 美國 加州大學Lawrence Berkeley Laboratory研究員
1973-1975 中華民國海軍少尉預備軍官

2016-present Nano Device Laboratory (NDL), 合聘特聘研究員.
2011-present台灣大學特聘教授.
2009-2011 國立清華大學材料系 清華講座教授
2003-2009 台積電講座教授

1999 Distinguished Technical Staff (DMTS) Award for sustained research achievements by Bell Laboratories, Lucent Technologies. 貝爾實驗室特聘研究員(The citation reads: “You are being honored for development of a novel oxide, Ga2O3(Gd2O3), to effectively passivate GaAs having a low interface state density range. You have used this thermodynamically and photo-chemically stable oxide to demonstrate the formation of inversion layers in both n- and p-type GaAs, which have eluded scientists and engineers around the world for more than three decades. You demonstrated the world’s first enhancement- and depletion-mode GaAs MOSFETs with stable high current densities without hysteresis. This may have applications (both analog and digital) in high speed electronic components and systems. Your work in material science has continued to keep Bell Labs – Lucent Technologies at the forefront in science and technology.”)
Fellow, American Physical Society (The citation reads: “For pioneering in III-V semiconductor metal oxide semiconductor field effect transistors including the landmark discovery of high dielectric constant oxide films on GaAs surface with low interface states and unpinned Fermi level and the first demonstration of inversion-channel GaAs MOSFET, timely for science and technology beyond Si CMOS. ”)
Fellow, IEEE (Institute of Electrical and Electronics Engineers, Inc.) (The citation reads: “for contributions to III-V semiconductor MOSFET transistors”)
Fellow, Physical Society of Republic of China, Taiwan (The citation reads: “藉由新穎奈米磊晶,掌控氧化物與Ⅲ-Ⅴ族半導體的介面,奠定下世代元件科學根基,貢獻卓越。”)
Web of Science Total citations: 9980+, Hirsch Citation Index: 53; Google Scholar Total citations: 12,450, H index: 57
705th among the ISI's 1120 Most Cited Physicists (1981-1997) ranked by total citations in physics, astrophysics, materials science, chemical physics, and the related fields. (http://pcb4122.univ-lemans.fr/1120physiciens.html)

Professor Hong has worked in different research topics, from superconductivity, magnetism, semiconductor lasers, to advanced electronic devices. In 1994, he and his colleagues at Bell Labs discovered a novel oxide of Ga2O3(Gd2O3), which gives the oxide-GaAs hetero-structure a low interfacial density of states in mid-range of 1011 cm-2 eV-1, thus solving a problem which has puzzled researchers for the last 35 years. This has led to the first demonstration of inversion-channel GaAs/InGaAs MOSFETs, the Holy Grail in compound semiconductor electronics.

From 2003 to now, he and Professor J. Raynien Kwo, and their research groups have made landmark contributions to achieve very low interfacial densities of states, very low electrical current leakage, high-temperature (900oC) stability of the high k/III-V (and Ge) MOS, surface Fermi level unpinning mechanism, sub-nm EOT in the high k’s in III-V and Ge, among many other critical properties, essential for the technology beyond 7-5 nm node CMOS. Moreover, they have fabricated self-aligned inversion- channel InGaAs MOSFETs with world-record high drain currents and transconductances.

2015
Achieving record high extrinsic drain current >1.8 mA/μm and transconductance >0.95 mS/μm in 1m in self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect transistors with in-situ deposited ALD-Al2O3 as gate dielectrics
Self-aligned inversion-channel n-InGaAs, p-GaSb, and p-Ge MOSFETs with a common high k gate dielectric using a CMOS compatible process
Single-crystal Y2O3 epitaxially on GaAs(001) and (111) using atomic layer deposition with extremely small frequency dispersion at accumulation in the CV curves and interfacial trap density in 2-4 x 1011 cm-2eV-1 using conductance method
2014
Greatly improved interfacial passivation of in-situ high dielectric deposition on freshly grown molecule beam epitaxy Ge epitaxial layer on Ge(100)
Observation of Strongly Enhanced Inverse Spin Hall Voltage in Fe3Si/GaAs Structures
2013
Achieving record high drain current >1.5 mA/μm and transconductance >1.0 mS/μm in 1μm gate length self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect transistors with in-situ deposited ALD-HfO2 as gate dielectrics
Effectively passivating GaSb with UHV-deposited and ALD-Y2O3, achieving very low interfacial trap densities and record high drain currents in self-aligned inversion-channel GaSb MOSFETs
2012
Both ALD- and MBE-HfO2 based high-κ dielectrics on In0.53Ga0.47As and In0.2Ga0.8As with low Dit’s, excellent thermodynamic stability, and outstanding oxide scalability, thus breaking the myth that tetravalent oxides such as HfO2 could not give an excellent high-κ/InGaAs interface
First to probe atom-to-atom interactions for atomic layer deposition of trimethylaluminum/H2O on Ga-rich GaAs(001)- 4x6 and As-rich GaAs(001)-2x4 surfaces using in-situ synchrotron-radiation photoemission
2011
Achieving record high drain current >1.5 mA/μm in self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect transistors with in-situ deposited Al2O3/Y2O3 as gate dielectrics
Direct determination of flat-band voltage for metal/high oxide/semiconductor heterointerfaces by electric-field- induced second-harmonic generation
Achieving a record-low interfacial density of states with a flat distribution in Ga2O3(Gd2O3) directly deposited on GeAtomic-scale determination of band offsets at Gd2O3/GaAs (100) hetero-interface using scanning tunneling spectroscopy type
2010
Attainment of low interfacial trap density absent of a large mid-gap peak in In0.2Ga0.8As by Ga2O3(Gd2O3) passivation
In-situ ALD Al2O3 on GaAs – achieving more symmetrical CVs, unparalleled by comparing with other ALD approaches, which give good CVs for p-type, but poor for n-type
In-situ synchrotron photoemission studies on high k’s on GaAs and Ge in attaining detailed interfacial atomic/ chemical bonding
Effective reduction of interfacial traps in Al2O3/GaAs (001) gate stacks using surface engineering and thermal annealing
2009
Achieving drain current enhancement and negligible current collapse in GaN metal-oxide-semiconductor field-effect-transistor with aid of high-quality ALD-oxides/GaN interface.
Achieving nanometer-thick 0.5 nm CET single-crystal hexagonal Gd2O3 on GaN with exceptional high-temperature thermal stability (1100 oC) for advanced complementary metal-oxide-semiconductor technology
Achieving nanometer-thick 0.6 nm CET amorphous/single-crystal Ga2O3(Gd2O3) on InGaAs with exceptional high-temperature thermal stability (900oC) for advanced complementary metal-oxide-semiconductor technology
Achieving Ga2O3(Gd2O3) on Ge without interfacial layers and also a low EOT of 0.6 nm
2008
First to achieve an EOT of 1.0 nm in both MBE and ALD oxide deposited on InGaAs
Achieving low interfacial trap density in atomic layer deposited (ALD) Al2O3 on In0.53Ga0.47As
Single crystal GaN on Si with nm-thick single crystal Sc2O3 and Al2O3 as a template
UHV high k dielectrics of Ga2O3(Gd2O3), HfO2, and Y2O3 on Ge without interfacial layers – achieving excellent electrical properties
2007
First to demonstrate a self-aligned inversion-channel Ga2O3(Gd2O3)/InGaAs MOSFET with world-record device performance in terms of drain currents of >1mA/μm and transconductance of > 0.7 mS/μm in a 1μm gate length device
First to achieve true inversion-channel GaN metal-oxide-semiconductor field-effect transistor with atomic-layer- deposited Al2O3 as gate dielectric
First self-aligned inversion n-channel InGaAs/GaAs metal-oxide-semiconductor field-effect-transistors with TiN gate and Ga2O3(Gd2O3) dielectric
First to use atomic-layer-deposited (ALD) HfO2 on In0.53Ga0.47As: passivation and energy-band parameters
2006
Cubic HfO2 doped with Y2O3 epitaxial films on GaAs (001) of enhanced dielectric constant of 34
First to determine energy-band parameters of atomic-layer-deposition-Al2O3/InGaAs heterostructures
2005
First to understand the mechanism of Fermi-level unpinning in ALD grown Al2O3 on InGaAs
A novel approach of using a molecular beam epitaxy grown template for subsequent atomic layer deposition of high dielectrics on Si without any interfacial layer to achieve a very low EOT
Growth of perfected nano-thick single crystal oxide films (gamma Al2O3 and Sc2O3) on Si
2004
First to achieve high-temperature thermodynamic stability and low interfacial density of states in Ga2O3 (Gd2O3)/GaAs interface – a must for self-aligned inversion-channel InGaAs MOSFET’s
First to grow all single-crystal heterostructures in GaN/Rare Earth Oxides (Gd2O3, Y2O3)/GaN with sharp interfaces and a low interfacial density of states in each interface
2003
Fabrication of GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition (ALD)
2002
First to grow a all single crystal heterostructure in GaN/Rare Earth Oxides (Gd2O3, Y2O3)/GaN with sharp interfaces and a low interfacial density of states in each interface (opening up a possibility of building three-dimensional integrate circuits)
Direct atomic structure determination of epitaxially grown films: Gd2O3 on GaAs (100)
2001
First to achieve a chemically abrupt, atomically sharp oxide/Si interface with a low interracial density of states using an e-beam/UHV (MBE) approach (a very significant accomplishment in microelectronics in replacing SiO2 with high-k gate dielectrics)
2000
First to demonstrate a GaAs CMOS inverter
First to grow hcp single crystal rare earth oxides (a high temperature phase) on GaN with a low interfacial density of states
First to grow a new fcc Gd2O3 phase on GaAs

 

郭瑞年 教授简历
Kwo,Ray Nien

 

 個人網站

研究室電話:03-5742800(物理館225室)
實驗室:先進薄膜低溫量測實驗室/新穎材料核心設施氧化物磊晶實驗室
實驗室電話: 03-571-5131-x 33225, and x 62446, ( 物理館 205, 206, 209 室 )
傳真:03-5723052
E-mail:
raynien@phys.nthu.edu.tw


 

學歷

  1. 美國史丹福大學應用物理系博士 (1977-1981)

  2. 美國史丹福大學應用物理系碩士 (1975-1977)

  3. 國立台灣大學物理系學士 (1971-1975)

現職與經歷

現職:
 

  1. 中華民國物理學會理事長(2008/01-)

  2. 國立清華大學基礎科學研究中心主任 (2008/08- )

  3. 國立清華大學特聘講座教授 ( 2008/08- )

  4. 國立清華大學自然科學講座教授 (2004/08- )

  5. 國立清華大學物理系教授 (2003/06- )

經歷:

  1. 國立清華大學物理系主任 (2005/08-2008/07 )

  2. 工業技術研究院(ITRI)資深顧問 (2003/06-2005/05 )

  3. Distinguished Member of Technical Staff, Electronic Research Laboratory, Agere Systems, New Jersey (2000-2003)

  4. Member of Technical Staff, Physical Research Division, Bell Laboratories, Murray Hill, New Jersey (1981-2000)

榮譽與獎項

  1. 美國物理學會會士

  2. 中華民國物理學會會士

  3. 清華大學特聘講座

  4. 清華自然科學講座

  5. 92-97年度傑出人才講座

  6. 清華大學台積電講座 (2003/06- 2004/2)

研究領域

    1. Materials physics of thin films by advanced molecular beam epitaxy

    2. Spintronics

    3. Gate dielectrics for Si and III-V semiconductors

    4. High temperature superconducting films

    5. Magnetic superlattices and heterostructures

研究興趣與成果

Updated on September 3, 2006

我的研究工作主要是以先進薄膜製成技術,開拓新穎材料,以探討其嶄新物理性質。過去在美國貝爾實驗室從事基礎研究逾二十二年,早期(1981-86年)代表作是以發明金屬原子分子磊晶術而首次於磁性超結晶格中發現磁性之「調控效應」,進而首創「磁電子學」之觀念。在1987-1992年中,因為發明氧化物原子分子磊晶術,而成功製造單晶高溫超導薄膜以研究其超導異向性及其基本機制。從1993年至今,主要興趣是在研究新穎高介電質材料薄膜為未來奈米電子與奈米光電之應用,其中******貢獻是發現鎵釓氧化混合物首次製成了三五半導體之場電效應電晶體,預期在不久未來將取代目前已面臨極大瓶頸之矽半導體技術。此外,另一正在進行之尖端研究是「自旋電子學」,包括探討稀釋磁氧化物薄膜之磁性,自旋磁化分析,自旋注入,以及發展自旋場電效應電晶體等。


 
代表著作
  1. [2009]  "InGaAs Metal-Oxide-Semiconductor Devices with High k Dielectrics for Science and Technology beyond Si CMOS”, M. Hong*, J. Kwo*, T. D. Lin, and M. L. Huang, MRS Bulletin, 34, 514, (2009).
  2. [2005] "High κ Gate Dielectrics for Compound Semiconductors, by J. Kwo and M. Hong , a book chapter in "Advanced Gate Stacks on High-Mobility Semiconductors”, edited by A. Dimoulas, E. P. Gusev, P. McIntyre, M. Heyns, Springer publishing company in the Springer Series Materials Science, (2005).
  3. [2000] "High εgate dielectrics Gd2O3 and Y2O3 for Si”, J. Kwo, M. Hong, A.R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, Appl. Phys. Lett., 77, 130, (2000).
  4. [1999] "Semiconductor-Insulator Interfaces”, M. Hong, C. T. Liu, H. Reese, and J. Kwo in "Encyclopedia of Electrical and Electronics Engineering”, 19, p. 87-100, Ed. by J. G. Webster, Published by John Wiley & Sons, New York, (1999).
  5. [1999] "Epitaxial Cubic Gd2O3 as a Dielectric for GaAs Passivation”, M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, SCIENCE, 283, 1897 (1999).
  6. [1992] "Out of Plane Orbital Characters of Conducting Holes in La2-xSrxCuO4”, C. T. Chen, L. H. Tjeng, J. Kwo, H. L. Kao, P. Rudoff, F. Sette, and R. M. Fleming", Phys. Rev. Lett. 68, 2543, (1992).
  7. [1992] "Systematic Evolution of Temperature Dependent Resistivity in La2-xSrxCuO4”, H. Takagi, B. Batlogg, H. L. Kao, J. Kwo, R. J. Cava, J. J. Krajewski and W. F. Peck, Jr., Phys. Rev. Lett. 69, 2975, (1992).
  8. [1991] "Magnetic Rare Earth Superlattices,” C. F. Majkrzak, J. Kwo, M. Hong, Y. Yafet, D. Gibbs, C. L. Chien and J. Bohr, Journal of Advances in Physics, 40, 99-189, (1991).
  9. [1988] "Crystal Structure of the 80K Superconductor YBa2Cu4O8”, P. Marsh, R. M. Fleming, M. L. Mandich, A. M. DeSantolo, J. Kwo, M. Hong, L. Maratinez-Miranda, NATURE V334, 141, (1988).
  10. [1988] "In-situ Epitaxial Growth of YBa2Cu3O7-x Films by Molecular Beam Epitaxy with an Activated Oxygen Source”, J. Kwo, M. Hong, D. J. Trevor, R. M. Fleming, A. E. White, R. C. Farrow, A. R. Kortan, and K. N. Short, Appl. Phys. Lett. 53, 2683, (1988).
  11. [1987] "Synthesis of Rare Earth Films and Superlattices” J. Kwo, a chapter in "Thin Film Techniques for Low Dimensional Structures", Edited by R. F. C. Farrow, S. S. P. Parkin, P. J. Dobson, N. H. Neave, and A. S. Arrott, NATO ASI Series B, Physics 13, p. 337, Plenum Publisher (1987).
  12. [1985] "Magnetic and Structural Properties of Single Crystal Rare-Earth Gd/Y Superlattices”, J. Kwo, E. M. Gyorgy, D. B. McWhan, M. Hong, F. J. Di Salvo, C. Vettier and J. E. Bower, Phys. Rev. Lett. 55, 1402 (1985).
  13. [1981] "Superconducting Tunneling into Al5 Nb3Al Thin Films”, J. Kwo and T. H. Geballe, Phys. Rev. B23, 3230 (1981).

编辑与转载于2016,1,4


上一篇:第1659篇 诗篇译文比较研究(34)

下一篇:第1661篇(转载) Y染色体亚当和线粒体夏娃学说


回首页