是目前的实验远远不可能达到的。

  

为什么需要多维空间?

 

  理解了宇宙的空间有更多维存在,再回过来看相对论与量子理论是如何产生矛盾的,我们就很容易理解了:这两个理论在日常的三维空间里是不可能统一的,它们的矛盾是必然的,只有在高维空间里才能得到统一。

  为了更好地理解这一点,我们可以举一个三维世界和二维世界的例子。我们首先假设有一些生活在二维平面世界的生命,它们的世界里只有长和宽,根本无法理解第三维——"高"这一维。因此,它们对三维世界的感知只限于三维物体在平面世界的投影,或者三维物体与平面世界的接触面,试想一想,一个平面生命怎么能够通过投影来想象三维物体的丰富性和完整性呢?当三维物体与平面世界接触时,三维物体在平面世界上的零碎片段,比如一张桌子的四根脚柱、人印在地面上的两双鞋印,更让平面生命摸不着头脑——这些拼不到一起的碎片究竟意味着什么呢?它们不能想象,四片互不相连的印迹怎么会构成一张完整的桌子呢?那断断续续的鞋印上怎么会有一双完整的鞋呢?而且,鞋的上面竟然还有一个更加完整的人!用二维的眼光来打量这些碎片,你永远不可能将它们拼成一个整体。

  于是有一天,一个足智多谋的平面生命偶然想出一个绝妙的主意。它宣布,平面世界之外还有一个"向上"的第三维,如果顺着这些碎片"向上"看,其实碎片是一个完整的整体!这真是个惊人的见解,大多数平面生命都困惑不解。

  相对论和量子理论的遭遇与这种情况非常相似,在我们的三维空间里,它们就像两块互不相干的碎片,永远也拼合不到一起。但把空间"向上"抬一抬,把宇宙变为十维空间,相对论和量子理论这两块看似互不相干的碎片就会令人震惊地结合得天衣无缝,成为一个更完整的理论大厦的两根互相依存的支柱!虽然我们在三维空间中无法想象和描述一个多维的空间,但我们却能通过复杂的数学方程推导出它的存在。

M理论

    人们自然而然地问,为什么有6个维度是蜷缩起来的?这6个维度有何不同之处?为什么不是5个或者8个维度蜷缩?这种蜷缩的拓扑性质是怎样的?有没有办法证明它?因为弦的尺度是如此之小(普朗克空间),所以人们缺乏必要的技术手段用实验去直接认识它,而且弦论的计算是如此繁难,不用说解方程,就连方程本身我们都无法确定,而只有采用近似法!更糟糕的是,当第一次革命过去后,人们虽然大浪淘沙,筛除掉了大量的可能的对称,却仍有5种超弦理论被保留了下来,每一种理论都采用10维时空,也都能自圆其说。这5种理论究竟哪一种才是正确的?人们一鼓作气冲到这里,却发现自己被困住了。弦论的热潮很快消退,许多人又回到自己的本职领域中去,第一次革命尘埃落定。

    一直要到90年代中期,超弦才再次从沉睡中苏醒过来,完成一次绝地反攻。这次唤醒它的是爱德华威顿。在1995年南加州大学召开的超弦年会上,威顿让所有的人都吃惊不小,他证明了,不同耦合常数的弦论在本质上其实是相同的!我们只能用微扰法处理弱耦合的理论,也就是说,耦合常数很小,在这样的情况下5种弦论看起来相当不同。但是,假如我们逐渐放大耦合常数,它们应当是一个大理论的5个不同的变种!特别是,当耦合常数被放大时,出现了一个新的维度--第11维!这就像一张纸只有2维,但你把许多纸叠在一起,就出现了一个新的维度--高度!

    换句话说,存在着一个更为基本的理论,现有的5种超弦理论都是它在不同情况的极限,它们是互相包容的!这就像那个著名的寓言--盲人摸象。有人摸到鼻子,有人摸到耳朵,有人摸到尾巴,虽然这些人的感觉非常不同,但他们摸到的却是同一头象--只不过每个人都摸到了一部分而已!格林(Brian Greene)在1999年的《优雅的宇宙》中举了一个相当搞笑的例子,我们把它发挥一下:想象一个热带雨林中的土著喜欢水,却从未见过冰,与此相反,一个爱斯基摩人喜欢冰,但因为他生活的地方太寒冷,从未见过液态的水的样子(无疑现实中的爱斯基摩人见过水,但我们可以进一步想象他生活在土星的光环上,那就不错了),两人某天在沙漠中见面,为各自的爱好吵得不可开交。但奇妙的事情发生了:在沙漠炎热的白天,爱斯基摩人的冰融化成了水!而在寒冷的夜晚,水又重新冻结成了冰!两人终于意识到,原来他们喜欢的其实是同一样东西,只不过在不同的条件下形态不同罢了。

    这样一来,5种超弦就都被包容在一个统一的图像中,物理学家们终于可以松一口气。这个统一的理论被称为"M理论"。没人知道这个"M"确切代表什么意思,或许发明者的本意是指"母亲"(Mother),说明它是5种超弦的母理论,但也有人认为是"神秘"(Mystery),或者"矩阵"(Matrix),或者"膜"(Membrane)。

    在M理论中,时空变成了11维,由此可以衍生出所有5种10维的超弦论来。事实上,由于多了一维,我们另有一个超引力的变种,因此一共是6个衍生品!这时候我们再考察时空的基本结构,会发现它并非只能是1维的弦,而同样可能是0维的点,2维的膜,或者3维的泡泡,或者4维的…我想不出4维的名头。实际上,这个基本结构可能是任意维数的:从0维一直到9维都有可能!M理论的古怪,比起超弦还要有过之而无不及。

    不管超弦还是M理论,它们都刚刚起步,还有更长的路要走。虽然异常复杂,但是超弦/M理论仍然取得了一定的成功,甚至它得以解释黑洞熵的问题--1996年,施特罗明格(Strominger)和瓦法(Vafa)的论文为此开辟了道路。在那之前不久的一次讲演中,霍金还挖苦说:"弦理论迄今为止的表现相当悲惨:它甚至不能描述太阳结构,更不用说黑洞了。"不过他最终还是改变了看法而加入弦论的潮流中来。M理论是"第二次超弦革命"的一部分,如今这次革命的硝烟也已经散尽,超弦又进入一个蛰伏期。PBS后来在格林的书的基础上做了有关超弦的电视节目,在公众中引起了相当的热潮。或许不久就会有第三次第四次超弦革命,从而最终完成物理学的统一,我们谁也无法预见。

    值得注意的是,自弦论以来,我们开始注意到,似乎量子论的结构才是更为基本的。以往人们喜欢先用经典手段确定理论的大框架,然后在细节上做量子论的修正,这可以称为"自大而小"的方法。但在弦论里,必须首先引进量子论,然后才导出大尺度上的时空结构!人们开始认识到,也许"自小而大"才是根本的解释宇宙的方法。如今大多数弦论家都认为,量子论在其中扮演了关键的角色,量子结构不用被改正。而广义相对论的路子却很可能是错误的,虽然它的几何结构极为美妙,但只能委屈它退到推论的地位--而不是基本的基础假设!许多人相信,只有更进一步地依赖量子的力量,超弦才会有一个比较光明的未来。